Integration by Trigonometric Substitution Calculator & Solver (2024)

1

Here, we show you a step-by-step solved example of integration by trigonometric substitution. This solution was automatically generated by our smart calculator:

$\int\sqrt{x^2+4}dx$

2

We can solve the integral $\int\sqrt{x^2+4}dx$ by applying integration method of trigonometric substitution using the substitution

$x=2\tan\left(\theta \right)$

Intermediate steps

Differentiate both sides of the equation $x=2\tan\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(2\tan\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(2\tan\left(\theta \right)\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$2\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$2\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)^2$

The derivative of the linear function is equal to $1$

$2\sec\left(\theta \right)^2$

3

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=2\sec\left(\theta \right)^2d\theta$

4

Substituting in the original integral, we get

$\int2\sqrt{4\tan\left(\theta \right)^2+4}\sec\left(\theta \right)^2d\theta$

5

Factor the polynomial $4\tan\left(\theta \right)^2+4$ by it's greatest common factor (GCF): $4$

$\int2\sqrt{4\left(\tan\left(\theta \right)^2+1\right)}\sec\left(\theta \right)^2d\theta$

6

The power of a product is equal to the product of it's factors raised to the same power

$\int4\sqrt{\tan\left(\theta \right)^2+1}\sec\left(\theta \right)^2d\theta$

7

Applying the trigonometric identity: $1+\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2$

$\int4\sqrt{\sec\left(\theta \right)^2}\sec\left(\theta \right)^2d\theta$

8

The integral of a function times a constant ($4$) is equal to the constant times the integral of the function

$4\int\sqrt{\sec\left(\theta \right)^2}\sec\left(\theta \right)^2d\theta$

9

Simplify $\sqrt{\sec\left(\theta \right)^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $0.5$

$4\int\sec\left(\theta \right)\sec\left(\theta \right)^2d\theta$

10

When multiplying exponents with same base you can add the exponents: $\sec\left(\theta \right)\sec\left(\theta \right)^2$

$4\int\sec\left(\theta \right)^{3}d\theta$

11

Rewrite $\sec\left(\theta \right)^{3}$ as the product of two secants

$4\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$

12

We can solve the integral $\int\sec\left(\theta \right)^2\sec\left(\theta \right)d\theta$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

Intermediate steps

Taking the derivative of secant function: $\frac{d}{dx}\left(\sec(x)\right)=\sec(x)\cdot\tan(x)\cdot D_x(x)$

$\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)\tan\left(\theta \right)$

The derivative of the linear function is equal to $1$

$\sec\left(\theta \right)\tan\left(\theta \right)$

13

First, identify or choose $u$ and calculate it's derivative, $du$

$\begin{matrix}\displaystyle{u=\sec\left(\theta \right)}\\ \displaystyle{du=\sec\left(\theta \right)\tan\left(\theta \right)d\theta}\end{matrix}$

14

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\sec\left(\theta \right)^2d\theta}\\ \displaystyle{\int dv=\int \sec\left(\theta \right)^2d\theta}\end{matrix}$

15

Solve the integral to find $v$

$v=\int\sec\left(\theta \right)^2d\theta$

16

The integral of $\sec(x)^2$ is $\tan(x)$

$\tan\left(\theta \right)$

Intermediate steps

When multiplying two powers that have the same base ($\tan\left(\theta \right)$), you can add the exponents

$4\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\sec\left(\theta \right)\tan\left(\theta \right)^2d\theta\right)$

17

Now replace the values of $u$, $du$ and $v$ in the last formula

$4\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\sec\left(\theta \right)\tan\left(\theta \right)^2d\theta\right)$

18

Multiply the single term $4$ by each term of the polynomial $\left(\tan\left(\theta \right)\sec\left(\theta \right)-\int\sec\left(\theta \right)\tan\left(\theta \right)^2d\theta\right)$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\sec\left(\theta \right)\tan\left(\theta \right)^2d\theta$

Intermediate steps

Applying the trigonometric identity: $\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2-1$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\sec\left(\theta \right)\left(\sec\left(\theta \right)^2-1\right)d\theta$

19

We identify that the integral has the form $\int\tan^m(x)\sec^n(x)dx$. If $n$ is odd and $m$ is even, then we need to express everything in terms of secant, expand and integrate each function separately

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\sec\left(\theta \right)\left(\sec\left(\theta \right)^2-1\right)d\theta$

Intermediate steps

Multiply the single term $\sec\left(\theta \right)$ by each term of the polynomial $\left(\sec\left(\theta \right)^2-1\right)$

$\int\left(\sec\left(\theta \right)^2\sec\left(\theta \right)-\sec\left(\theta \right)\right)$

When multiplying exponents with same base you can add the exponents: $\sec\left(\theta \right)^2\sec\left(\theta \right)$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$

20

Multiply the single term $\sec\left(\theta \right)$ by each term of the polynomial $\left(\sec\left(\theta \right)^2-1\right)$

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$

21

Expand the integral $\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$4\tan\left(\theta \right)\sec\left(\theta \right)-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$

Intermediate steps

Express the variable $\theta$ in terms of the original variable $x$

$4\frac{x}{2}\frac{\sqrt{x^2+4}}{2}-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$

Multiplying the fraction by $4\left(\frac{\sqrt{x^2+4}}{2}\right)$

$\sqrt{x^2+4}x-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$

22

Express the variable $\theta$ in terms of the original variable $x$

$\sqrt{x^2+4}x-4\int\sec\left(\theta \right)^{3}d\theta-4\int-\sec\left(\theta \right)d\theta$

Intermediate steps

Simplify the integral $\int\sec\left(\theta \right)^{3}d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{3-1}+\frac{3-2}{3-1}\int\sec\left(\theta \right)d\theta\right)$

Solve the product $-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{3-1}+\frac{3-2}{3-1}\int\sec\left(\theta \right)d\theta\right)$

$-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)-2\int\sec\left(\theta \right)d\theta$

Simplify the fraction $-4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)$

$-2\sin\left(\theta \right)\sec\left(\theta \right)^{2}-2\int\sec\left(\theta \right)d\theta$

Express the variable $\theta$ in terms of the original variable $x$

$-\frac{1}{2}\sqrt{x^2+4}x-2\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

23

The integral $-4\int\sec\left(\theta \right)^{3}d\theta$ results in: $-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

$-\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

24

Gather the results of all integrals

$\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)-\frac{1}{2}\sqrt{x^2+4}x-4\int-\sec\left(\theta \right)d\theta$

25

Combining like terms $\sqrt{x^2+4}x$ and $-\frac{1}{2}\sqrt{x^2+4}x$

$\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)-4\int-\sec\left(\theta \right)d\theta$

Intermediate steps

The integral of a function times a constant ($-1$) is equal to the constant times the integral of the function

$4\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$4\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)$

Express the variable $\theta$ in terms of the original variable $x$

$4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

26

The integral $-4\int-\sec\left(\theta \right)d\theta$ results in: $4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

$4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

27

Gather the results of all integrals

$\frac{1}{2}\sqrt{x^2+4}x-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)+4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

28

Combining like terms $-2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$ and $4\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\frac{\sqrt{x^2+4}}{2}+\frac{x}{2}\right)$

29

The least common multiple (LCM) of a sum of algebraic fractions consists of the product of the common factors with the greatest exponent, and the uncommon factors

$L.C.M.=2$

30

Combine and simplify all terms in the same fraction with common denominator $2$

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\frac{\sqrt{x^2+4}+x}{2}\right)$

31

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\frac{\sqrt{x^2+4}+x}{2}\right)+C_0$

32

Simplify the expression by applying logarithm properties

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\sqrt{x^2+4}+x\right)+C_1$

Final answer to the problem

$\frac{1}{2}\sqrt{x^2+4}x+2\ln\left(\sqrt{x^2+4}+x\right)+C_1$

Integration by Trigonometric Substitution Calculator & Solver (2024)
Top Articles
Latest Posts
Article information

Author: Dan Stracke

Last Updated:

Views: 6111

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dan Stracke

Birthday: 1992-08-25

Address: 2253 Brown Springs, East Alla, OH 38634-0309

Phone: +398735162064

Job: Investor Government Associate

Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.